R
jupyter notebook 安装 R
conda install -c r r-essentials
基本操作
# 下载包
install.packages("lubridate", dependencies=TRUE, repos='http://cran.rstudio.com/')
# Get and print current working directory.
print(getwd())
# 设置工作目录
setwd("F:/Projects/time_series_forecast/ARIMA")
# 退出命令行
q()
# 查看变量类型
class(var)
# 变量打印
print(var)
# 变量长度
nrow(var)
# 赋值
myString <- "Hello, World!"
print (myString)
# The $ allows you extract elements by name from a named list
x <- list(a=1, b=2, c=3)
x$b
# [1] 2
#You can find the names of a list using names()
names(x)
# [1] "a" "b" "c"
# 删除变量
rm(var.3)
# 绘图
plot(data)
# 查看头部数据
head(data)
# Create a vector.
apple <- c('red','green',"yellow")
# Create a list.
list1 <- list(c(2,5,3),21.3,sin)
# 函数定义
function_name <- function(arg_1, arg_2, ...) {
Function body
}
# 循环
for (value in vector) {
statements
}
# 判断
x <- 30L
if(is.integer(x)) {
print("X is an Integer")
}
数据分析
# 读取csv文件
data2<-read.table('item.csv',header=TRUE,fileEncoding='utf-8')
# 查询文件行数和列数
print(is.data.frame(data))
print(ncol(data))
print(nrow(data))
# Get the max salary from data frame.
sal <- max(data$salary)
print(sal)
# Get the person detail having max salary.
retval <- subset(data, salary == max(salary))
print(retval)
# 获取薪水大于600且是IT部分的员工信息
info <- subset(data, salary > 600 & dept == "IT")
print(info)
# 写入csv文件
data <- read.csv("input.csv")
retval <- subset(data, as.Date(start_date) > as.Date("2014-01-01"))
write.csv(retval,"output.csv")
类型转换
# to int
as.integer(x)
# Use is.foo to test for data type foo. Returns TRUE or FALSE
is.numeric(a)
# Use as.foo to explicitly convert it.
a <- as.character(a)
时间序列
# frequency:取值包括1,4,12,分别代表年度,季度,月度数据
ts(data = NA, start = , end = , frequency = , ...)